Real-time Replanning Using 3D Environment for
Humanoid Robot

Léo Baudouin, Nicolas Perrin, Olivier Stasse, Eiichi Yoshida
Thomas Moulard, Florent Lamiraux CNRS-AIST, JRL (Joint Robotics Laboratory),
LAAS-CNRS, Universié de Toulouse UMI 3218/CRT,
7, avenue du Colonel Roche Intelligent Systems Research Institute,
31077 Toulouse cedex 4, France AIST Central 2, Umezono 1-1-1,
| eo. baudoui n@ aas. fr Tsukuba, Ibaraki 305-8568 Japan
ni col as. perrin@aas. fr olivier.stasse@ist.go.jp
t homas. noul ard@ aas. fr e.yoshi da@i st.go.jp

Abstract—In this paper, we illustrate experimentally an origi-
nal real-time replanning scheme and architecture for humanoid
robot reactive walking. Based on a dense set of actions, our
approach uses a large panel of the humanoid robot capabilities
and is particularly well suited for 3D collision avoidance. Indeed
A* approaches becomes difficult in such situation, thus the
method demonstrated here relies on RRT. Combined with an
approximation of the volume swept by the robot body while
walking, our method is able to cope with 3D obstacles while
maintaining real-time computation. We experimentally validate
our approach on the robot HRP-2.

Index Terms—motion planning, replanning, humanoid robots,
obstacle avoidance, HRP-2.

I. INTRODUCTION

One of the main goals of humanoid robotics is to enab
robots to navigate in complex indoor environments that ha
been designed for humans. These environments have us
a flat floor, and while the space occupied by the upper bo
of the robot (or human) usually remains relatively free fro
obstacles, the lower part is often cluttered with obstacl
whose position is frequently changed (such as chairs, sable
on the floor, etc.). For this reason humanoid robots are oetkég. 1. Top: precomputed swept volumes are used to speed Upi@oll
suited for these environments than wheeled robots when tHfi§fetion for the body. Bottom: experiment on HRP-2.

might have no choice but to step over some obstacles, or move

in narrow passages. In order to achieve real-time navigatigwept volumes [5], whereas only sparse finite footsteps are
in dynamic environments, humanoid robots need robust agghsidered in [3][4]. In the following sections we describe
reactive planning capacity of generating precise leg metiothe aigorithms and software architecture that enables real
in a short amount of time. The dynamic and stability CORyme planning and replanning with the humanoid robot HRP-
straints intrinsic to humanoid locomotion make the probles i, an environment where obstacles are sensed through
of trajectory planning (and replanning) particularly ditfit to motion capture. In section 1l we present the global software
solve in real-time. _ _ architecture while in section 1l we give more details about
There have been not so may studies on real-time humangid gifferent components. Finally we discuss the results of

motion planning in dynamic environments due to the compleygy,, experiments and conclude in section IV and section V,
ity of the problem. Previous studies set several hypoth&sesggpectively.

reduce the complexity to guarantee the real-time operation

for example restricting the obstacles to 2D shapes [1] or Il. GLOBAL ARCHITECTURE

simple geometries [2]. Recently interactive 3D navigation In this section we describe the global organization of our
by humanoid [3][4] has been reported, but it is for statiplanning framework. As described later, we introduce tws di
environments. In this paper, we consider 3D moving obssacliénct parallel processes, “Planner” that plan the trajgctnd
and handle the collision avoidance with the legs in an ateurdControl” that execute the planned trajectory. They comimun
way, based on fast motion planning with precomputed densate with other process such localization system that tietec

"
anner Articular
Start speeds
¥
' SoT| | Robor]
Execution thread Planning thread é = ‘:.J_ §§§ % € L Robot
v al8l@| 2 8N|q|&| aower+ ¥
N o m CoM +
Update Problem / - ZMP,
> Deft " Wait for Problem - . .
Lo ! Localisation| 30 obs. CoM
Geo. ' system |posions | Server Yaw Control
Testing change Path found lower
. - Start
collisio ! Traj. colliding | . 1: . - o
Path planne NN +
! uer: 0 Qw3 2
Traj. not Query > Query ! L1818/8|® ala &
colli@ing 1 ! “ o MmN

_______ ! Update Traj. Planni o -
o Viewer | User

v A
Geo. Path found Finished
—chanee | Execute
8 Fig. 3. Connections with the server.

| Path found

1
i Collision
expected
and wait
Execution finished This organization and the communications through the
Canceled server are illustrated on Fig. 3. The planner has six datesflow
mishe

Canceled

The three most important flows are the trajectory of the lower

b , body ¢;. ... the position and orientation of 3D obstacles

y ¥ and the start signal. The lower body trajectory contains leg

| Idle | joint trajectories as well as CoM and ZMP trajectories as

defined earlier. The remaining 3 flows are for visualization:

2D obstacles (which are mostly used to simulate artificial
obstacles), the current goal position, and the currentesezp

the environmental changes, and the visualization systéietca Of steps planned.

“Viewer” to monitor the status of the robots and environnsent The main difficulty for the server is to manage communi-

A. Motion trajectory and control cations between two systems running at different frequency
' The control loop reads inputs at a constant rate (for our HRP-
As detailed in II-B, the Planner runs continuously to rez hymanoid it is 5ms) whereas the planner runs with lower

fine the trajectory according to the dynamic environmentglequency: they are therefore asynchronous. To cope wish th

Fig. 2. Replanning process

changes. _ _ _ issue, the controller uses a buffer to handle the large w&cto
First, we define the configuration of the rolipthat can be sent py the planner. This buffer contains a large sequence of
decomposed as follows: brower () values to be followed in the futuré & t,,0,), and

d = [X, Qrowers Gupper] € SE(3) x RO*Z x R™ (1) these values are updated every time a new trajectf)ty, ,. is
received. This mechanism is illustrated on Algorithm 1.

where x define the robot spatial coordinates (we celthe o rohot control and stabilization is performed using
free-flyer),q;,.... represents the vector for the joints of both

legs, andy,,,,,.., is a vector with 18 values for the upper body

joints. Algorithm 1 System control loop

The output of the Planner sent to the Control Concerrﬁ?equire' A fixed valueq for the upper body joints
only the lower body¢} ... this contains lower body joints aIIocéte buffer upper '
trajectories as well as the free-flyar the CoM (center of

. : . n«2o
mass) and ZMP (zero moment point) trajectories. Here t<<—_0
denotes the trajectory planned satth run of the Planner. In oop

addition, the notatior’”™ will be used to denote sequences of

. - o if receive¢) then
N footsteps, with SE(2) the rigid motion in a 2D space. I VePiower

update buffer

vV e [SEQ)V @) nen+1
In order to perform real-time replanning, our global archi- end if
p p 9, g (Ujowers Xs CoM, ZMP) < Grower(t)

tecture follows the organization illustrated in Fig. 2 whic
was proposed in [6]. The control loop and the planning are
working in independent modules and communicate only when

q< [X’ qlower7 qupper]
apply g on the robot (using the actuated degrees of

needed through the server (see Fig. 3). In an executiondhrea Irie(:of])m
the planned trajectory is sent to the control part, while the end loop

localization information is read to check for potentiallibn.

Algorithm 2 Planning component [1l. A LGORITHMS AND IMPLEMENTATION

loop . A. Walking Pattern Generation based on “Half-Steps”
read goal and obstacles positions
¥, < compute new sequence of steps When replanning is performed while a humanoid robot
if trajectory not totally sent to controlléhen walks dynamically, one of the problems that arise is that a

create a portion opy, for one step (this portion of Step has always some influence over the next step, and as a

trajectory also depends on the next step because of g@fisequence it is not possible to easily modify the sequence
smoothing process — see section IlI-A —), and sendaf steps for they are not independent. It is also not always

to the controller possible to stop the robot at the end of the current step. We

end if adopt a walking pattern generation method [8] that can avoid

end loop this problem. The generation of walk sequences is split into
two phases.

First, we generate a walk with zero speed in the middle and
generalized inverse kinematics “Stack of Task® ([7]). That the end of each step. The generated walk is thus composed

Stack of Task mechanism resolves different tasks such ‘ds half-steps” that can be concatenated at will. These-half

trajectory of legs or CoM with priorities, and generates th%teps are all dynamic trajectories, but with zero speedeonn

whole-body motionq sent to the low-level controller of the UONS (i-. a half-step is a trajectory in the configuratipace
robot. between two quasi-static poses). It is therefore possibétap

the robot at the end of any half-step, that is to say either in
B. Planner a double support stance or with the swing foot in maximum
The planner is a loop presented on Algorithm 2. It corfeight position (this height is chosen relatively large iveg
tinuously reads the coordinates of the goal and obstacl§80d obstacle clearance to the robo). _
and checks if there is a new target or new collisions. After In the second phase the half-steps are progressively merged

generating a sequence of “half steps” by walking pattem’ overlapping them. As a result, the motiqn becomes dynamic
generation (see section I1I-A), it is connected to the presiy and smooth whereas the steps becomes interdependent. At the

generated trajectory using path connection (see sectigp)ll €nd of this phase the walk becomes more fluid, faster and

At every run of the Planner loop, there are three cases tffa@re dynamic. This two-phase approach for walking pattern
are handled in the following manner: generation is very convenient for online replanning beeaus

. . o we control the independence between half-steps in the sense
o Goal has changed: if the displacement is bigger than_a . .
that the smoothing between two consecutive half-steps ean b
threshold, we replan from two steps after the current .
easily canceled.

one up to the new goal. This value gives to the plannerIff | £10 half-st has b | d

enough time to find a path. It represents a period of q or ex?lT?j e_tq sequertlc%t()) K t?1 ~Steps has (:ten fm:r}.r]lte

about 2.5s. Otherwise we pick a step from the end smoothed, 1t 1S easy to ‘brea € sequence atter "
alf-step and replace the next half-steps, and the smapthin

list proportionally to the size of displacement to sta rtweed only to be restarted just before the fifth half-step.df w

replanning.) :) S
« Obstacle collides with the current planned trajectory: v\}énow the tn_ne rquwed for t_he smooth_mg (which is actually
either not so varying), this replanning operation can be done while

. the robot performs the sequence of walk.
— replan from the step before the collision, P q

— or replan from two steps after the current one. B. Collision detection

Mixtures between these two strategies have been con-q gpiain real-time footstep planning, we need to perform
sidered. The new goal is defined as the union of small.y quick collision checks. To do so we use an approach
regions around all the steps occurring after the lagimilar to the one introduced in [5] where swept volume
collision in the current trajectory. approximations are precomputed offline. The principleciot

« Otherwise (no collision / goal change detected): we takfis remark: after the smoothing process, the final trajgab
a random initial step (later than 2 steps after the currenpq step or half-step of the robot depends on many parameters
one) and a random final stdpin the current trajectory, (smqothing parameters and parameters of the current ard nex
and replan betweenandf. The goal of this replanning is pi_steps) but before the smoothingvhen the sequence of
to find shortcuts in the path (during the planning procesyi siep is “raw”, the trajectory of the robot locally only
if a path is found betweenand another step thanin genends on the parameters of the current half-step.
the current trajectory, we also check whether a shortcut,, addition, half-steps have the good property of needing
has been found). Newly computed paths are presenvggh, three parameters to be completely defined. Because of
only if they are better than the corresponding sequencgs,’ |y dimensionality of this parameter space, it is pdesib
in the current trajectory. To compare different SeqUENCES ohiain a quite dense covering of the set of feasible half-
we take into account the number of steps (fewer is bett%rt)eps with only a limited number of fixed half-steps. So what

but also favor forward steps. we do is that we decide a finite set of half-steps in advance

(about 200), and we will use only these half-steps to produce
sequences of walk. There are two types of half-steps (see
[5]): upward and downward half-steps, and roughly fsr
upward half-steps an@/ downward half-steps, it is possible
to generateV x N different single steps.

Thus, with only a relatively limited number of half-steps
we have a large number of available steps, so it gives us a
very good expressiveness compared with methods where only
15 to 30 steps are considered [1], [3]. So, once the finite
set of half-steps is chosen, for each of them we create the
approximation of the volume swept by the lower part of the
robot legs during its execution (see Fig. 1). For the upper pa
of the robot we are less precise and use rough bounding boxes.
In [5], the swept volume approximation are stored in tree
structures and designed to be efficiently tested againstgof

the environment, but in our implementation we use these tree)
Fig. 4. Connection between two paths at step 102. The lapt aitehe

structures to fir?‘t bl'_'"d triangle meshes representing \N’.Eps colored path has to be changed to reach the exact positidmeasld step.
volume approximations, and then use the PQP algorithm [9]

to check collisions against triangle meshes in the enviemtm

To sum up the process: some parts of the current plan, it uses intermediate goals.
« We first plan a collision-free walk sequence walk usingvhen the planning process that tries to reach this goal, it

only a finite number half-steps (planning phase). verifies if a configuration i€lose enougho the intermediate

For each half-step we know a conservative approximati@®al, instead of ensuring the goal is exactly reached. I tha
of the volume swept by the robot during this half-steg;ase, to link the intermediate sequence with the initial one
the approximations are computed offline. Thus, we satke last half-step must be adjusted. This situation is shiown
a great amount of time during collision checks: indeedfig. 4 where the (half-)step 102 has to be modified.
instead of performing many collision checks along the To know how steps can be modified, we use again the
half-step trajectory, we perform just one collision checRroperty of low dimensionality of the half-steps: offlinegw
with the swept volume approximation. use extensive simulations to decide an approximation of the
Once a collision-free sequence of half-steps has beeentinuous region of feasible half-steps (feasible halps
found, we can start to smooth it. However, smoothingiust avoid self-collisions and joint limit violations). @hks
the trajectory amounts to a rather unpredictable defde the low dimensionality of parameter space for half-steps
mation: we need to do collision checks again. For theskfinition, this construction can be done in a few hours. &inc
collision checks, we use the PQP algorithm with conveke slightly modified half-steps do not belong to the fixed
representations of the robot bodies (it reduces the numfiigite set of half-steps for which we know swept volume
of triangles). Of course verifying a trajectory with thes@pproximations, before validating an adjustment we need to
collision checks is slower than with the swept voluméheck collisions with the environment for the modified half-
approximations, but overall the smoothing process &ep.
much faster than the planning phase: smoothing is only
done for trajectory optimization and it does not need]
to consider thousands of trajectories like the plannirfy Distributed computations
process. We have conducted experiments with the humanoid robot
platform HRP-2 [11]. It has two on-board computers: one

IV. EXPERIMENTS

C. Footstep planning

is used for the low-level control and hosts a general inverse

During the planning phase, we use a discretized versiRimematics module called Stack of Tasks (SoT in Fig. 3) and
of RRT [10] similar to the one used in [5] to search for ahe other is used here for planning. One remote computer
collision-free sequence of half-steps. This metho@dshoc is used to acquire the position of robot, goal and obstacles

and not yet completely satisfying as RRT is not very wethrough motion capture system (for this reason a set of motio
suited for discrete footstep planning, but since we haveiab@apture reflectors must be placed on every potentially ngovin
200 half-steps, this approach is overall better than an Atae obstacle). The fourth computer is used to visualize theeoiirr
whose performances quickly dwindle when the number efate of the robot and the environment.
possible actions increases.)
B. Environment

D. Connection between paths All experiments were performed on the robot HRP-2. We

In several occasions we have to adjust footsteps in orderused a flat surface ofid by 6m, and obstacles such as a table
connect paths: for example when the planner tries to opgimiand a chair.

Fig. 5. Simulation of the 2D environment, representing ardasre/the robot
is not allowed to put a foot.

Obstacles are tracked by the motion capture system, send
3D positions over the local network. The robot is also traicke
through motion capture in order to localize the obstaclés rerig 6. Top: in simulation, HRP-2 stepping over bars of sec8omx 8cm.
tively to the robot position and orientation. Obstacle poss Bottom: details on the stepping over motion of an horizontale&aOcm
are updated before every planning, up to 5 times per secofgpeve the ground.

A selected object defines a potentially moving 2D goal are
The robot is required to reach the goal and put one of its feet
this 2D area of about5cm x 15¢m. Our algorithm is usually
capable of finding paths very quickly even in quite compl
environments with 2D and 3D obstacles as shown in Fig.
In Section V, we propose some ideas to further speed up
planning.

C. Results

The simulations have shown that we can use our planne
step over obstacles as in Fig. 6 where the robot has to o
come bars lying horizontally up to 10 cm above the groun
The smoothing process handles the collision avoidanceglur
the rise and the descent of the foot. In the experiment degbic
in Fig. 7, the robot feet pass at about 2cm from the bar.

We tested different scenarios where we modified online t
obstacles and goal positions. There are failure cases,ewhes
RRT is not aple to reach the goal within the time limit, buEig. 7. Details on stepping over a bar placed 8cm over thergrauth the
most of the time the planner is able to successfully retusrRp-2 robot.
new sequences of steps to avoid unpredicted collisionsedaus
the environmental changes. The planner takes abits to
find a path of 4m long with 30 steps, taking into account two V. CONCLUSIONS AND FUTURE WORK
obstacles defined with about 60 thousands of triangles @h.tot We have presented a real-time footstep planner for a hu-
For shorter paths (less than one meter long), the planner caanoid robot that uses precomputed swept volumes for fast
quickly plan tens of paths in a second. This helps the robot dbstacle avoidance. The RRT algorithm used for planning doe
improve portions of the current path when the obstacles andt always return the best path, but it is a good compromise
the goal do not move. between computation time and the number of steps needed to

However, as the planner does not always have enough tireach the goal. Our approach is well suited for planning in 3D
to produce close-to-optimal paths, and the robot occaljonadynamic environments and we believe that we have obtained
follows unnecessarily long paths. In future work we hope foreliminary but promising results in our quest towards &ffit
reduce planning time through the use of modern computationline replanning of walking motions.
technology such as parallelization. In future work, we will use vision systems to detect the

position of the objects around the robot and the positiofef t [4]

robot itself in the environment to increase the robot autoyo
We also wish to improve the performance of our algorithms[;5

through parallelization. We could for example launch salver

different planning algorithms at the same time, and always
choose the best trajectory found. A better management gg‘]
the expected computation time would also leads to more

improvement of small portions of the current path, when full

replanning is not necessary.

ACKNOWLEDGMENT

(7]

(8]

This work was supported by RBLINK Project, Contract

ANR-08-JCJC-0075-01.

REFERENCES

[1] J. Chestnutt, M. Lau, G. Cheung, J. Kuffner, J. Hodgimg] & Kanade,
“Footstep planning for the Honda ASIMO Humanoid,"IBEE/RAS Int.
Conf. on Robotics and Automatiop005, pp. 631-636.

[2] J.-S. Gutmann, M. Fukuchi, and M. Fuijita, “3D Perceptioml &nviron-
ment Map Generation for Humanoid Robot Navigatiomternational
Journal of Robotics Researchiol. 27, pp. 1117-1134, 2008.

[3] J. Chestnutt, K. Nishiwaki, J. Kuffner, and S. Kagami, tdractive
Control of Humanoid Navigation,” pp. 3519-3524, 2011.

El

(10]

(11]

J. Chestnutt, K. Harada, E. Yoshida, and Y. Kazuhfitmtion Planning
for Humanoid Robots Springer-Verlag, 2010, ch. Navigation and gait
planning, pp. 1-28.

] N. Perrin, O. Stasse, L. Baudouin, F. Lamiraux, and E. Yiesh“Fast

humanoid robot collision-free footstep planning using sweplume
approximations,lEEE Transactions on Robotic2011, conditionnally
accepted.

E. Yoshida and F. Kanehiro, “Reactive Robot Motion usiR@th
Replanning and Deformation,” iEEE/RAS Int. Conf. on Robotics and
Automation 2011, pp. 5457-5462.

N. Mansard and F. Chaumette, “Task Sequencing for SeBased
Control,” IEEE Transactions on Roboticsol. 23, no. 1, pp. 60-72,
February 2007.

N. Perrin, F. L. O. Stasse, and E. Yoshida, “A biped wadkpattern gen-
erator based on half-steps for dimensionality reductiom,JEEE/RAS
Int. Conf. on Robotics and Automatio2011, pp. 1270-1275.

E. Larsen, S. Gootschalk, M. Lin, and D. Manocha, “Fastxnity
Queries with Swept Sphere Volumes,” ilEEE/RAS Int. Conf. on
Robotics and Automatier2000, pp. 3719-3726.

S. LaValle and J. Kuffner, “Rapidly-exploring randomeé¢s: Progress
and prospects,” ittVorkshop on the Algorithmic Foundations of Robatics
2000, pp. 293-308.

K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kaw&g M. Hirata,
K. Akachi, and T. Isozumi, “The humanoid robot HRP-2,"Rnoc. 2004
IEEE Int. Conf. on Robotics and Automatjd004, pp. 1083-1090.

