
Real-time Replanning Using 3D Environment for
Humanoid Robot

Léo Baudouin, Nicolas Perrin,
Thomas Moulard, Florent Lamiraux

LAAS-CNRS, Universit́e de Toulouse
7, avenue du Colonel Roche

31077 Toulouse cedex 4, France
leo.baudouin@laas.fr

nicolas.perrin@laas.fr

thomas.moulard@laas.fr

Olivier Stasse, Eiichi Yoshida
CNRS-AIST, JRL (Joint Robotics Laboratory),

UMI 3218/CRT,
Intelligent Systems Research Institute,

AIST Central 2, Umezono 1-1-1,
Tsukuba, Ibaraki 305-8568 Japan
olivier.stasse@aist.go.jp

e.yoshida@aist.go.jp

Abstract—In this paper, we illustrate experimentally an origi-
nal real-time replanning scheme and architecture for humanoid
robot reactive walking. Based on a dense set of actions, our
approach uses a large panel of the humanoid robot capabilities
and is particularly well suited for 3D collision avoidance. Indeed
A* approaches becomes difficult in such situation, thus the
method demonstrated here relies on RRT. Combined with an
approximation of the volume swept by the robot body while
walking, our method is able to cope with 3D obstacles while
maintaining real-time computation. We experimentally validate
our approach on the robot HRP-2.

Index Terms—motion planning, replanning, humanoid robots,
obstacle avoidance, HRP-2.

I. I NTRODUCTION

One of the main goals of humanoid robotics is to enable
robots to navigate in complex indoor environments that have
been designed for humans. These environments have usually
a flat floor, and while the space occupied by the upper body
of the robot (or human) usually remains relatively free from
obstacles, the lower part is often cluttered with obstacles
whose position is frequently changed (such as chairs, cables
on the floor, etc.). For this reason humanoid robots are better
suited for these environments than wheeled robots when they
might have no choice but to step over some obstacles, or move
in narrow passages. In order to achieve real-time navigation
in dynamic environments, humanoid robots need robust and
reactive planning capacity of generating precise leg motions
in a short amount of time. The dynamic and stability con-
straints intrinsic to humanoid locomotion make the problem
of trajectory planning (and replanning) particularly difficult to
solve in real-time.

There have been not so may studies on real-time humanoid
motion planning in dynamic environments due to the complex-
ity of the problem. Previous studies set several hypothesesto
reduce the complexity to guarantee the real-time operation,
for example restricting the obstacles to 2D shapes [1] or
simple geometries [2]. Recently interactive 3D navigation
by humanoid [3][4] has been reported, but it is for static
environments. In this paper, we consider 3D moving obstacles
and handle the collision avoidance with the legs in an accurate
way, based on fast motion planning with precomputed dense

Fig. 1. Top: precomputed swept volumes are used to speed up collision
detection for the body. Bottom: experiment on HRP-2.

swept volumes [5], whereas only sparse finite footsteps are
considered in [3][4]. In the following sections we describe
the algorithms and software architecture that enables real-
time planning and replanning with the humanoid robot HRP-
2 in an environment where obstacles are sensed through
motion capture. In section II we present the global software
architecture while in section III we give more details about
the different components. Finally we discuss the results of
our experiments and conclude in section IV and section V,
respectively.

II. GLOBAL ARCHITECTURE

In this section we describe the global organization of our
planning framework. As described later, we introduce two dis-
tinct parallel processes, “Planner” that plan the trajectory and
“Control” that execute the planned trajectory. They communi-
cate with other process such localization system that detects



Planning threadExecution thread

Wait for Problem 

Planning 

Testing 
collision

Execute 

 Update Traj. 

Traj. colliding

Query

 Start 

Collision 
expected Safe stop 

and wait 

 Update Problem / 

Deformation 

Path found

Path found

Query

Canceled

Execution finished

Finished

Finished

Path found
Geo. 
change

Canceled

Idle 

Idle 

Traj. not 
colliding

 Geo. 
change 

Path planned

Fig. 2. Replanning process

the environmental changes, and the visualization system called
“Viewer” to monitor the status of the robots and environments.

A. Motion trajectory and control

As detailed in II-B, the Planner runs continuously to re-
fine the trajectory according to the dynamic environmental
changes.

First, we define the configuration of the robotq that can be
decomposed as follows:

q = [x,qlower,qupper] ∈ SE(3)× R
6×2
× R

18 (1)

where x define the robot spatial coordinates (we callx the
free-flyer),qlower represents the vector for the joints of both
legs, andqupper is a vector with 18 values for the upper body
joints.

The output of the Planner sent to the Control concerns
only the lower bodyφn

lower: this contains lower body joints
trajectories as well as the free-flyerx, the CoM (center of
mass) and ZMP (zero moment point) trajectories. Heren

denotes the trajectory planned atn-th run of the Planner. In
addition, the notationΨN will be used to denote sequences of
N footsteps, with SE(2) the rigid motion in a 2D space.

ΨN
∈ [SE(2)]N (2)

In order to perform real-time replanning, our global archi-
tecture follows the organization illustrated in Fig. 2 which
was proposed in [6]. The control loop and the planning are
working in independent modules and communicate only when
needed through the server (see Fig. 3). In an execution thread,
the planned trajectory is sent to the control part, while the
localization information is read to check for potential collision.

Server

Planner

Viewer User

Localisation

system

RobotSoT

Control
3D obs.

T
a
s
k

2
D

 o
b
s
.

G
o
a
l

S
te

p
s

q
_
lo

w
e
r 

+
 

C
o
M

 +
 

Z
M

P

S
te

p
s

G
o
a
l

q
_
lo

w
e
r

C
o
M

Y
a
w

3
D

 o
b
s
.

2
D

 o
b
s
.

S
ta

rt

S
ta

rt

positions

Start

q_lower + 

CoM + 

ZMP

q_lower

Yaw

CoM

Articular

 speeds

3
D

 o
b
s
.

Fig. 3. Connections with the server.

This organization and the communications through the
server are illustrated on Fig. 3. The planner has six data flows.
The three most important flows are the trajectory of the lower
body φn

lower, the position and orientation of 3D obstacles
and the start signal. The lower body trajectory contains leg
joint trajectories as well as CoM and ZMP trajectories as
defined earlier. The remaining 3 flows are for visualization:
2D obstacles (which are mostly used to simulate artificial
obstacles), the current goal position, and the current sequence
of steps planned.

The main difficulty for the server is to manage communi-
cations between two systems running at different frequency.
The control loop reads inputs at a constant rate (for our HRP-
2 humanoid it is 5ms) whereas the planner runs with lower
frequency: they are therefore asynchronous. To cope with this
issue, the controller uses a buffer to handle the large vectors
sent by the planner. This buffer contains a large sequence of
φlower(t) values to be followed in the future (t > tnow), and
these values are updated every time a new trajectoryφn

lower is
received. This mechanism is illustrated on Algorithm 1.

The robot control and stabilization is performed using

Algorithm 1 System control loop
Require: A fixed valuequpper for the upper body joints.

allocate buffer
n← 0
t ← 0
loop

if receiveφn
lower then

update buffer
n← n + 1

end if
(qlower, x, CoM, ZMP )← φlower(t)
q← [x,qlower,qupper]
apply q on the robot (using the actuated degrees of
freedom)
t ← t + ∆t

end loop



Algorithm 2 Planning component
loop

read goal and obstacles positions
Ψn ← compute new sequence of steps
if trajectory not totally sent to controllerthen

create a portion ofφn
lower for one step (this portion of

trajectory also depends on the next step because of the
smoothing process – see section III-A –), and send it
to the controller

end if
end loop

generalized inverse kinematics “Stack of Task” ([7]). The
Stack of Task mechanism resolves different tasks such as
trajectory of legs or CoM with priorities, and generates the
whole-body motionq sent to the low-level controller of the
robot.

B. Planner

The planner is a loop presented on Algorithm 2. It con-
tinuously reads the coordinates of the goal and obstacles,
and checks if there is a new target or new collisions. After
generating a sequence of “half steps” by walking pattern
generation (see section III-A), it is connected to the previously
generated trajectory using path connection (see section III-D).

At every run of the Planner loop, there are three cases that
are handled in the following manner:

• Goal has changed: if the displacement is bigger than a
threshold, we replan from two steps after the current
one up to the new goal. This value gives to the planner
enough time to find a path. It represents a period of
about 2.5s. Otherwise we pick a step from the end of
list proportionally to the size of displacement to start
replanning.

• Obstacle collides with the current planned trajectory: we
either

– replan from the step before the collision,
– or replan from two steps after the current one.

Mixtures between these two strategies have been con-
sidered. The new goal is defined as the union of small
regions around all the steps occurring after the last
collision in the current trajectory.

• Otherwise (no collision / goal change detected): we take
a random initial stepi (later than 2 steps after the current
one) and a random final stepf in the current trajectory,
and replan betweeni andf. The goal of this replanning is
to find shortcuts in the path (during the planning process
if a path is found betweeni and another step thanf in
the current trajectory, we also check whether a shortcut
has been found). Newly computed paths are preserved
only if they are better than the corresponding sequences
in the current trajectory. To compare different sequences
we take into account the number of steps (fewer is better)
but also favor forward steps.

III. A LGORITHMS AND IMPLEMENTATION

A. Walking Pattern Generation based on “Half-Steps”

When replanning is performed while a humanoid robot
walks dynamically, one of the problems that arise is that a
step has always some influence over the next step, and as a
consequence it is not possible to easily modify the sequences
of steps for they are not independent. It is also not always
possible to stop the robot at the end of the current step. We
adopt a walking pattern generation method [8] that can avoid
this problem. The generation of walk sequences is split into
two phases.

First, we generate a walk with zero speed in the middle and
at the end of each step. The generated walk is thus composed
of “half-steps” that can be concatenated at will. These half-
steps are all dynamic trajectories, but with zero speed connec-
tions (i.e. a half-step is a trajectory in the configuration space
between two quasi-static poses). It is therefore possible to stop
the robot at the end of any half-step, that is to say either in
a double support stance or with the swing foot in maximum
height position (this height is chosen relatively large to give a
good obstacle clearance to the robot).

In the second phase the half-steps are progressively merged
by overlapping them. As a result, the motion becomes dynamic
and smooth whereas the steps becomes interdependent. At the
end of this phase the walk becomes more fluid, faster and
more dynamic. This two-phase approach for walking pattern
generation is very convenient for online replanning because
we control the independence between half-steps in the sense
that the smoothing between two consecutive half-steps can be
easily canceled.

If for example a sequence of 10 half-steps has been planned
and smoothed, it is easy to “break” the sequence after the fifth
half-step and replace the next half-steps, and the smoothing
need only to be restarted just before the fifth half-step. If we
know the time required for the smoothing (which is actually
not so varying), this replanning operation can be done while
the robot performs the sequence of walk.

B. Collision detection

To obtain real-time footstep planning, we need to perform
very quick collision checks. To do so we use an approach
similar to the one introduced in [5] where swept volume
approximations are precomputed offline. The principle follows
this remark: after the smoothing process, the final trajectory of
one step or half-step of the robot depends on many parameters
(smoothing parameters and parameters of the current and next
half-steps),but before the smoothing, when the sequence of
half-step is “raw”, the trajectory of the robot locally only
depends on the parameters of the current half-step.

In addition, half-steps have the good property of needing
only three parameters to be completely defined. Because of
the low dimensionality of this parameter space, it is possible
to obtain a quite dense covering of the set of feasible half-
steps with only a limited number of fixed half-steps. So what
we do is that we decide a finite set of half-steps in advance



(about 200), and we will use only these half-steps to produce
sequences of walk. There are two types of half-steps (see
[5]): upward and downward half-steps, and roughly forN

upward half-steps andN downward half-steps, it is possible
to generateN ×N different single steps.

Thus, with only a relatively limited number of half-steps
we have a large number of available steps, so it gives us a
very good expressiveness compared with methods where only
15 to 30 steps are considered [1], [3]. So, once the finite
set of half-steps is chosen, for each of them we create the
approximation of the volume swept by the lower part of the
robot legs during its execution (see Fig. 1). For the upper part
of the robot we are less precise and use rough bounding boxes.
In [5], the swept volume approximation are stored in tree
structures and designed to be efficiently tested against points of
the environment, but in our implementation we use these tree
structures to first build triangle meshes representing the swept
volume approximations, and then use the PQP algorithm [9]
to check collisions against triangle meshes in the environment.

To sum up the process:

• We first plan a collision-free walk sequence walk using
only a finite number half-steps (planning phase).

• For each half-step we know a conservative approximation
of the volume swept by the robot during this half-step,
the approximations are computed offline. Thus, we save
a great amount of time during collision checks: indeed,
instead of performing many collision checks along the
half-step trajectory, we perform just one collision check
with the swept volume approximation.

• Once a collision-free sequence of half-steps has been
found, we can start to smooth it. However, smoothing
the trajectory amounts to a rather unpredictable defor-
mation: we need to do collision checks again. For these
collision checks, we use the PQP algorithm with convex
representations of the robot bodies (it reduces the number
of triangles). Of course verifying a trajectory with these
collision checks is slower than with the swept volume
approximations, but overall the smoothing process is
much faster than the planning phase: smoothing is only
done for trajectory optimization and it does not need
to consider thousands of trajectories like the planning
process.

C. Footstep planning

During the planning phase, we use a discretized version
of RRT [10] similar to the one used in [5] to search for a
collision-free sequence of half-steps. This method isad hoc
and not yet completely satisfying as RRT is not very well
suited for discrete footstep planning, but since we have about
200 half-steps, this approach is overall better than an A* search
whose performances quickly dwindle when the number of
possible actions increases.

D. Connection between paths

In several occasions we have to adjust footsteps in order to
connect paths: for example when the planner tries to optimize

Fig. 4. Connection between two paths at step 102. The last step of the
colored path has to be changed to reach the exact position of the old step.

some parts of the current plan, it uses intermediate goals.
When the planning process that tries to reach this goal, it
verifies if a configuration isclose enoughto the intermediate
goal, instead of ensuring the goal is exactly reached. In that
case, to link the intermediate sequence with the initial one
the last half-step must be adjusted. This situation is shownin
Fig. 4 where the (half-)step 102 has to be modified.

To know how steps can be modified, we use again the
property of low dimensionality of the half-steps: offline, we
use extensive simulations to decide an approximation of the
continuous region of feasible half-steps (feasible half-steps
must avoid self-collisions and joint limit violations). Thanks
to the low dimensionality of parameter space for half-steps
definition, this construction can be done in a few hours. Since
the slightly modified half-steps do not belong to the fixed
finite set of half-steps for which we know swept volume
approximations, before validating an adjustment we need to
check collisions with the environment for the modified half-
step.

IV. EXPERIMENTS

A. Distributed computations

We have conducted experiments with the humanoid robot
platform HRP-2 [11]. It has two on-board computers: one
is used for the low-level control and hosts a general inverse
kinematics module called Stack of Tasks (SoT in Fig. 3) and
the other is used here for planning. One remote computer
is used to acquire the position of robot, goal and obstacles
through motion capture system (for this reason a set of motion
capture reflectors must be placed on every potentially moving
obstacle). The fourth computer is used to visualize the current
state of the robot and the environment.

B. Environment

All experiments were performed on the robot HRP-2. We
used a flat surface of 4m by 6m, and obstacles such as a table
and a chair.



Fig. 5. Simulation of the 2D environment, representing areas where the robot
is not allowed to put a foot.

Obstacles are tracked by the motion capture system, sending
3D positions over the local network. The robot is also tracked
through motion capture in order to localize the obstacles rela-
tively to the robot position and orientation. Obstacle positions
are updated before every planning, up to 5 times per second.

A selected object defines a potentially moving 2D goal area.
The robot is required to reach the goal and put one of its feet in
this 2D area of about15cm× 15cm. Our algorithm is usually
capable of finding paths very quickly even in quite complex
environments with 2D and 3D obstacles as shown in Fig. 5.
In Section V, we propose some ideas to further speed up the
planning.

C. Results

The simulations have shown that we can use our planner to
step over obstacles as in Fig. 6 where the robot has to over-
come bars lying horizontally up to 10 cm above the ground.
The smoothing process handles the collision avoidance during
the rise and the descent of the foot. In the experiment depicted
in Fig. 7, the robot feet pass at about 2cm from the bar.

We tested different scenarios where we modified online the
obstacles and goal positions. There are failure cases, where
RRT is not able to reach the goal within the time limit, but
most of the time the planner is able to successfully return
new sequences of steps to avoid unpredicted collisions caused
the environmental changes. The planner takes about200ms to
find a path of 4m long with 30 steps, taking into account two
obstacles defined with about 60 thousands of triangles in total.
For shorter paths (less than one meter long), the planner can
quickly plan tens of paths in a second. This helps the robot to
improve portions of the current path when the obstacles and
the goal do not move.

However, as the planner does not always have enough time
to produce close-to-optimal paths, and the robot occasionally
follows unnecessarily long paths. In future work we hope to
reduce planning time through the use of modern computation
technology such as parallelization.

Fig. 6. Top: in simulation, HRP-2 stepping over bars of section 8cm×8cm.
Bottom: details on the stepping over motion of an horizontal cable 10cm
above the ground.

Fig. 7. Details on stepping over a bar placed 8cm over the ground with the
HRP-2 robot.

V. CONCLUSIONS AND FUTURE WORK

We have presented a real-time footstep planner for a hu-
manoid robot that uses precomputed swept volumes for fast
obstacle avoidance. The RRT algorithm used for planning does
not always return the best path, but it is a good compromise
between computation time and the number of steps needed to
reach the goal. Our approach is well suited for planning in 3D
dynamic environments and we believe that we have obtained
preliminary but promising results in our quest towards efficient
online replanning of walking motions.

In future work, we will use vision systems to detect the



position of the objects around the robot and the position of the
robot itself in the environment to increase the robot autonomy.
We also wish to improve the performance of our algorithms
through parallelization. We could for example launch several
different planning algorithms at the same time, and always
choose the best trajectory found. A better management of
the expected computation time would also leads to more
improvement of small portions of the current path, when full
replanning is not necessary.

ACKNOWLEDGMENT

This work was supported by RBLINK Project, Contract
ANR-08-JCJC-0075-01.

REFERENCES

[1] J. Chestnutt, M. Lau, G. Cheung, J. Kuffner, J. Hodgins, and T. Kanade,
“Footstep planning for the Honda ASIMO Humanoid,” inIEEE/RAS Int.
Conf. on Robotics and Automation, 2005, pp. 631–636.

[2] J.-S. Gutmann, M. Fukuchi, and M. Fujita, “3D Perception and Environ-
ment Map Generation for Humanoid Robot Navigation,”International
Journal of Robotics Research, vol. 27, pp. 1117–1134, 2008.

[3] J. Chestnutt, K. Nishiwaki, J. Kuffner, and S. Kagami, “Interactive
Control of Humanoid Navigation,” pp. 3519–3524, 2011.

[4] J. Chestnutt, K. Harada, E. Yoshida, and Y. Kazuhito,Motion Planning
for Humanoid Robots. Springer-Verlag, 2010, ch. Navigation and gait
planning, pp. 1–28.

[5] N. Perrin, O. Stasse, L. Baudouin, F. Lamiraux, and E. Yoshida, “Fast
humanoid robot collision-free footstep planning using swept volume
approximations,”IEEE Transactions on Robotics, 2011, conditionnally
accepted.

[6] E. Yoshida and F. Kanehiro, “Reactive Robot Motion usingPath
Replanning and Deformation,” inIEEE/RAS Int. Conf. on Robotics and
Automation, 2011, pp. 5457–5462.

[7] N. Mansard and F. Chaumette, “Task Sequencing for Sensor-Based
Control,” IEEE Transactions on Robotics, vol. 23, no. 1, pp. 60–72,
February 2007.

[8] N. Perrin, F. L. O. Stasse, and E. Yoshida, “A biped walking pattern gen-
erator based on half-steps for dimensionality reduction,” in IEEE/RAS
Int. Conf. on Robotics and Automation, 2011, pp. 1270–1275.

[9] E. Larsen, S. Gootschalk, M. Lin, and D. Manocha, “Fast Proximity
Queries with Swept Sphere Volumes,” inIEEE/RAS Int. Conf. on
Robotics and Automation, 2000, pp. 3719–3726.

[10] S. LaValle and J. Kuffner, “Rapidly-exploring random trees: Progress
and prospects,” inWorkshop on the Algorithmic Foundations of Robotics,
2000, pp. 293–308.

[11] K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki, M. Hirata,
K. Akachi, and T. Isozumi, “The humanoid robot HRP-2,” inProc. 2004
IEEE Int. Conf. on Robotics and Automation, 2004, pp. 1083–1090.


